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Introduction  
Rates of syphilitic infections in the United States 
have risen dramatically, with a 608% increase in the 
rate of reported cases of primary and secondary 
(P&S) syphilis – the most infectious stage – in the 20-
year period from 2003 to 2022. Concurrent with the 
growing incidence among women of reproductive 
age, there has been a 769% increase in the number 
of congenital syphilis cases in the same period. 
Additionally, there are persistent racial and ethnic 
disparities: in 2022, non-Hispanic American Indian or 
Alaskan Native and non-Hispanic Black or African 
American persons had P&S syphilis rates of 67.0 and 
44.4 per 100,000, respectively; in comparison, White 
non-Hispanic persons had a P&S syphilis rate of 10.2 
per 100,000.i,ii  
 
Timely, accurate, and complete surveillance data are 
needed to monitor trends in morbidity and 
disparities, identify hot spots for outbreak response, 
and deploy public health resources more efficiently. 
Beyond the delivery of public health services, high 
quality data are needed to assess progress towards 
the Sexually Transmitted Infections National 
Strategic Plan iii and other state or local initiatives, 
support program evaluation and research, and 
ensure fair distributions of resources in formula-
based allocations that rely on morbidity. More 
broadly, beyond syphilis surveillance data, the 
COVID-19 pandemic highlighted the need for more 

robust and responsive public health data systems. 
That gap catalyzed the Data Modernization 
Initiativeiv and the Public Health Data Strategy,v 
which aim to modernize public health data and 
surveillance at the federal, state, and local levels.  
 
This report provides public health programs 
with strategies for implementing data 
aberration detection algorithms to identify 
meaningful changes in syphilis case 
surveillance data that indicate potential 
outbreaks or actionable data quality issues. 
The target audience includes state, Tribal, local, and 
territorial (STLT) health departments and Centers, 
Institutions, and Offices across the Centers for 
Disease Control and Prevention (CDC). Even if the 
Federal vision for a modernized public health data 
system with more complete, timely, and rapidly 
exchanged information is achieved, there remains a 
need for public health agency staff to review data 
routinely to identify shifts in morbidity or data 
quality issues that can be corrected more quickly 
before data are finalized. Although the concepts and 
approaches described here are specific to national 
case syphilis surveillance data from the National 
Notifiable Diseases Surveillance System (NNDSS), 
they are applicable to state and local data as well as 
other notifiable diseases. 
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The Syphilis Case Surveillance Data Lifecycle 
Implementing data aberration detection algorithms 
– including identifying specific aberrations to 
prioritize for detection – first requires understanding 
the data production lifecycle and differences across 
jurisdictions that may influence the timeliness, 
completeness, and accuracy of the data. 
 
Case surveillance data acquisition, 
preparation, and maintenance. NNDSS is part of 
a complex data ecosystem comprising partners from 
STLT health departments, community partners, and 
Federal agencies (Exhibit 1, Exhibit 2).  
 
Case surveillance for syphilis usually begins when 
there is laboratory or clinical evidence that an 
individual has a syphilitic infection, often a reactive 
serologic test. Because syphilis is a reportable 
condition in all 50 states and the District of 
Columbia, laboratories and providers are required by 
state law, regulation, or statue to report results to 
their local or state public health authority. These 
case reports include identifiable information on the 
patient so that the public health authority can take 
action to investigate, including assuring treatment 
and disease investigation, including partner 
notification. Then, using the laboratory and clinical 
information provided and data collected during the 
case investigation, surveillance staff in the STLT 
health department determine if the infection meets 
the Council of State and Territorial Epidemiologist 
(CSTE) surveillance syphilis case definition.vi   
 
To facilitate case identification and reporting, STLT 
health departments enter and store information 
from syphilis case reports and disease investigations 
in their public health information systems (PHIS). 
Jurisdictions choose which PHIS they use, including 
commercial disease surveillance software platforms 
as well as “homegrown” or custom systems.vii  
 

To support national syphilis surveillance, STLT health 
departments from all states, territories, the District 
of Columbia, and New York City transmit de-
identified syphilis case notifications from their PHIS 
to CDC at least weekly. Syphilis case notifications are 
based on the case information available at the STLT 
health department and are sent to CDC using data 
transmission standards provided by NNDSS. 
Although all PHIS can transmit case notifications for 
nationally notifiable conditions to CDC, the use of 
different PHISs across jurisdictions increases the 
complexity of standardizing data in NNDSS. 
 
At CDC, the Office of Public Health Data, 
Surveillance, and Technology (OPHDST) receives, 
processes, and stores case notifications received 
through NNDSS.viii OPHDST provides case data for 
nationally notifiable sexually transmitted infections 
(STIs), including syphilis, to the Division of STD 
Prevention (DSTDP), which reviews data throughout 
the year, working with STLT health departments to 
conduct ongoing quality assurance and improvement 
activities. This review and revision process for 
syphilis cases provided through NNDSS occurs 
throughout the year and then is iterated multiple 
times during a data reconciliation period, resulting in 
a finalized, annual data set used in national reporting 
and evaluation.  
 
Of note, with each data transmission, jurisdictions 
not only add notifications for newly identified cases, 
but they can revise previously submitted case 
notifications. For example, they may revise values in 
data fields such as race/ethnicity or remove 
previously submitted case notifications that were 
determined to be duplicates. Therefore, prior to 
annual reconciliation, live partial year data are not 
only incomplete, but they may on occasion include 
overreporting (i.e., if there are duplicate case 
notifications that are later reconciled) or 
demographic characteristics that are later revised. 
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Adding to the complexities of interpreting live data, 
patterns of incompleteness may vary throughout the 
year. 
 
Although the data undergo multiple steps before 
annual reconciliation, which requires considerable 

resources at the national and STLT level, the work is 
essential to ensure that STI surveillance data are of 
high quality and thereby actionable for STLT and 
community partners. 

 
 
 
Exhibit 1. Data ecosystem stakeholders 
  

The Syphilis Case Surveillance Data Lifecycle (cont.) 
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Factors that influence the timeliness, 
completeness, and accuracy of underlying 
data. With numerous entities collecting and 
transmitting data to the STLT health departments 
that subsequently provide syphilis case notification 
data to CDC through NNDSS, there are substantial 
differences across jurisdictions that can lead to 
different data quality considerations. As of 
December 2023, there are six different PHISs (NBS, 
PRISM HDS, Clinisys, Maven, STD*MIS, and 
EpiTrax), along with many additional customized 
systems, in use by the STLT health departments 
who send STI case notification data to CDC.ix 
Further, jurisdictions may use different data 
transmission standards to provide data to CDC. 
Some have onboarded the Health Level 7 (HL7) 

 
 
 
message mapping guides,x while others still provide 
data using the National Electronic 
Telecommunications System for Surveillance 
(NETSS) standard.xi Public health governance 
structures, and relationships among state, local, 
and regional health departments, can vary widely, 
leading to differences in the way case information 
is initialized in the jurisdiction’s PHIS.xii Additionally, 
within a state, local health departments may use a 
different PHIS from the state, resulting in additional 
challenges to standardizing data. The number of 
public health employees per capita also varies 
widely across reporting agencies, xiii potentially 
resulting in challenges in case investigations for 
understaffed locations.

The Syphilis Case Surveillance Data Lifecycle (cont.) 

 

Exhibit 2. Flow of information in surveillance information systems for syphilis 
 

Reproduced from Martin & Angles, 2023 xii 
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Aberration Detection Algorithms for Public 
Health Surveillance Data 
 
An “aberration” refers to changes in an event, such 
as the number of observed cases per month, that are 
significantly different than what is expected based 
on history.xiv Aberrations and outbreaks are related 
but do not necessarily overlap (Exhibit 3). An 
outbreak investigation focuses on unexpected 
changes in morbidity while an aberration 
detection is broader and additionally includes the 
assessment of anomalies that indicate data quality 

concerns. Identifying and interpreting aberrations 
requires both quantitative assessment and 
qualitative insights based on contextual information; 
for example, slow-growing outbreaks might not be 
flagged as an aberration and a sudden increase in 
cases might represent an anomaly such as a 
screening campaign, entering a backlog of cases into 
the PHIS, or random noise.  

 
 

 
 
There are multiple potential statistical approaches to 
aberration detection. These are summarized below, 
with a comparison of their strengths and weaknesses 
in Exhibit 4. Although some methods are stronger 
with respect to improved sensitivity and specificity 
to detect aberrations, the selection of an 
appropriate method depends on the context, ease of 
implementation, and the target audience. From a 
statistical standpoint, methods have varying 
suitability depending on the presence of strong 
temporal or seasonal trends, whether the condition 

has high or low morbidity, and the extent to which 
counts follow an approximately normal distribution. 
There are also trade-offs between the most suitable 
statistical approach and ease of interpretation; for 
example, advanced algorithms might have the 
highest sensitivity and specificity in certain 
circumstances, but they require specialized 
software, technical expertise, and additional 
computational time. Furthermore, they are more 
difficult to explain to diverse audiences, which might 
influence end users’ trust in the findings.  

 
 

Exhibit 3. Types of case  
count aberrations 
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Exhibit 4. Comparison of Selected Aberration Detection Methodologies for Use in Case Surveillancexv  

Methodology Strengths Weaknesses 

Linear or log-linear 
regression 

• Likely most familiar to audiences 
• Intuitive to explain 
• Simple to implement 
• Does not require specialized data analytic 

software 

• Likely to violate ordinary least squares assumptions 
such as autocorrelations among observations in a time 
series 

• Difficult to interpret outcomes that are not normally 
distributed such as in low-morbidity jurisdictions or 
where seasonal trends are present 

Historical limits 

• Intuitive to explain 
• Comparing the time period to the same weeks in 

prior years accounts for seasonality 
• Credibility established through well-known past 

use by CDC for aberration detection 

• More appropriate for weekly data 
• Does not account for long-term trends potentially 

leading to artificially high or low thresholds 
• Assumes a normal distribution 

Pseudo CUSUMs 

• Intuitive to explain 
• Easy to implement 
• Requires the least amount of training data 
• Easy to modify key parameters (rolling window of 

historical data and number of standard deviations 
for the threshold)  

• Key parameters are arbitrary and results are sensitive to 
those analytic decisions 

• Jurisdictions with varying morbidity may require 
different values of key parameters 

• Negative predicted values might be generated; log 
transformations or manually setting negative expected 
values to zero addresses the problem but may be 
difficult to interpret by users  

ARIMA 

• Sound statistical approach reflecting best 
practices for time series 

• Existing “auto.arima” package in R automatically 
selects the most appropriate model within the 
ARIMA class, avoiding data analysts needing to 
manually parameterize models for each 
jurisdiction 

• Allowing jurisdictions to have unique parameters 
addresses variable morbidity and epidemic trends 

• Difficult to explain to non-technical audiences 
• Negative predicted values might be generated; 

manually setting negative expected values to zero 
addresses the problem but may be difficult to interpret 
by users 

• Appropriate for continuous data as opposed to right 
skewed positive integers, making model performance 
questionable for smaller case counts 

Time series 
generalized linear 
models 

• Sound statistical approach reflecting best 
practices for time series of count values 

• Designed for discrete distributions, resulting in no 
negative predictive values  

• More suitable than other regression-based 
approaches for low-morbidity jurisdictions 

• Difficult to explain to non-technical audiences 
• Until an automated approach is developed (e.g., R’s 

“auto.arima” package), data analysts need to make 
decisions on appropriate parameters including how to 
adjust them for jurisdictions with varying morbidity and 
historical trends 

Bayesian methods 

• Robust body of literature supporting these 
methods 

• Capable of multivariate modelling 
• Can give results in the form of a traditional 

hypothesis test 

• Requires prior knowledge of the distribution of cases. 
This can be circumvented by using a non-informative 
prior, but this reduces the utility of a Bayesian approach 

• Difficult to explain to non-technical audiences 

Hidden Markov 
models 

• Incorporates the strengths of other Bayesian 
methods 

• Independence assumptions often more flexible 
than other time series models 

 

• Computationally very intensive 
• Requires prior knowledge of case distribution and some 

knowledge of epidemic distribution 
• Difficult to explain to non-technical audiences 

Machine learning 
methods 

• Many methods to choose from with a wide variety 
of complexities 

• Many algorithms already available in statistical 
software packages 

• The lack of strict training data makes it impossible to 
use most machine learning aberration detection 
methods 

• Unsupervised models offer additional challenges to 
fine-tune and validate 

• Difficult to explain to non-technical audiences 

Abbreviations: autoregressive integrated moving average (ARIMA), Centers for Disease Control and Prevention (CDC), pseudo 
cumulative sum (CUSUM) 

 

Aberration Detection Algorithms for Public Health Surveillance Data (cont.) 
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Linear or log-linear regression: In this classical 
regression approach, a trend line is fitted to the 
data, selecting the trend that provides the smallest 
difference between observed and expected values. 
For linear regression, this trend line is determined 
based on ordinary least squares. The forecasted 
values are projected from the trend line, with the 
regression-based confidence interval used to flag 
aberrations. Techniques such as implementing a log 
transformation of the outcome can be applied for 
data that do not follow a normal distribution or 
meet other regression assumptions. The threshold 
for flagging aberrations is based on confidence 
intervals whose range can be modified by users (e.g., 
95% or 90%). This statistical approach is commonly 
used for outbreak detection so is likely familiar to 
many audiences. Farrington et al., 1996 illustrate 
how this method can be used for outbreak detection 
for multiple infections using weekly infectious 
disease case data from the United Kingdom’s 
Communicable Disease Surveillance Centre, which is 
analogous to NNDSS.xvi 
 
Historical limits: This approach compares the 
current observed value to the average value for the 
same period across multiple years. This method is 
suitable for weekly data. By comparing the time 
frame of interest to the same window in prior years 
(e.g., looking at MMWR weeks 4 through 8 across 
years), it explicitly accounts for seasonality. Stroup 
et al., 1993

xviii

xvii describe an example for measles case 
reporting, in which the weekly average of a four-
week period is compared to historical data from the 
prior five years. For each historical year, there are 
three observations to increase the sample size and 
address potential seasonal effects: the 
corresponding 4-week period, the preceding 4-week 
period, and the following 4-week period. The 
threshold for flagging aberrations is based on 
confidence intervals whose range can be modified by 
users (e.g., 95% or 90%). MMWR weekly surveillance 
reports from 1994 through 2017 used historical 
limits to set thresholds for notifiable case report 

counts in both their tables and figures displaying 
comparisons of the number of provisional cases 
compared to prior time periods.  
 
Pseudo-cumulative sum control chart 
(pseudo-CUSUMs): This technique uses a rolling 
average to provide an expected value. The expected 
range is determined using the rolling average plus or 
minus a few standard deviations prescribed by the 
analyst (e.g., three or five standard deviations). For 
example, this method could take the average of the 
prior three quarters to project the expected value in 
the fourth quarter. Observations outside the 
predetermined number of standard deviations are 
flagged as aberrations. The analyst can prescribe the 
number of past observations to include in the rolling 
average. Past examples include the Early Aberration 
Reporting System that was subsequently integrated 
into Epi Info to monitor for bioterrorist attacksxix and 
real-time infection disease surveillance at the 
Olympic village using daily hospital data.xx  
 
Auto regressive integrative moving average 
(ARIMA) models: ARIMA models are a class of 
time series models that explicitly address 
autocorrelation and seasonality in time series data. 
Similar to classical regression models, prior values of 
a time series predict future values, with regression-
based confidence intervals used to flag aberrations. 
Many analytic and forecasting methods require that 
time series data are stationary (i.e., absent of trends 
or seasonality), which is analogous to the 
independence requirement for cross-sectional data. 
Violations of these assumptions can yield a 
prediction that is biased or with incorrect confidence 
intervals, which could in turn result in observed 
values incorrectly flagged (or not flagged) as a 
potential aberration. The ARIMA class includes 
autoregressive (AR) models, moving average (MA) 
models, autoregressive moving-average (ARMA) 
models, and autoregressive integrated moving-
average (ARIMA) models. The ARIMA class of models 
are commonly used in stock valuations and 

Aberration Detection Algorithms for Public Health Surveillance Data (cont.) 
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forecasting in the financial sector. The New York 
State Department of Health previously used an 
ARIMA model for predictive modeling of early 
syphilis and gonorrhea case report data.xxi 
 
Time series generalized linear models: These 
are similar to the ARIMA models described above, 
except that they use a generalized linear model 
through the use of a link function and a discrete 
distribution. These models are appropriate for data 
that do not follow a continuous distribution, such as 
counts.xxii At this time, R does not have an 
automated package for this class of models, so the 
analyst needs to specify the link function (identity or 
logarithmic), the distribution (Poisson or negative 
binomial), and the parameterization (the degree of 
the model and the number of prior observations to 
include). Compared to the auto ARIMA models 
described above, this approach avoids negative 
predicted values and would be appropriate for 
modeling time series with observations that do not 
follow a normal distribution or with low case counts.  
 
More complex data aberration detection 
methods: The utility of other methods that are 
more technically complex has been demonstrated 
for disease surveillance and they could potentially 
prove more accurate than the simpler methods 
previously described.xxiii

xxvii

 However, specific challenges 

with implementing these methods include 
computational time, required specialized expertise 
in areas of ongoing research, and difficulty in 
explaining to non-technical audiences. Bayesian 
methods are one increasingly popular approach for 
outbreak detection, as they are well suited to 
quantifying prediction uncertainty, particularly when 
the expected case distribution is known. One 
illustration of a Bayesian approach to outbreak 
detection is a study that applied this approach to 
influenza surveillance data for a single county in 
2010.xxiv Hidden Markov models fall under the 
Bayesian framework and model each event in a 
system as a sequence of “hidden” processes, each 
with distinct probability distributions. An early 
example of using hidden Markov models for 
outbreak detection was a Bayesian Markov switch 
model applied to Spanish influenza data in 2008.xxv 
Machine learning and data mining are broad classes 
of methods that can be applied to time series to 
identify aberrations. For example, Kane et al., 2014 
applied a machine learning categorization algorithm 
to Egyptian avian influenza data.xxvi In addition to the 
main challenges of the advanced methods previously 
described, machine learning methods need “training 
data” to “teach” and validate the models,  and 
finding appropriately classified data for past 
outbreaks is challenging.  

 

  

Aberration Detection Algorithms for Public Health Surveillance Data (cont.) 
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Challenges to Aberration Detection  
in Syphilis Surveillance Data 
Establishing a clear definition for outbreaks. 
Conceptually and operationally, it is difficult to 
define a syphilis outbreak. Unlike foodborne 
outbreaks, STI outbreaks are usually slow-growing 
and do not have a discrete start date. In 2018, CSTE 
developed a comprehensive framework to help STI 
programs determine whether their data indicated a 
syphilis outbreak. Although the authors included 
syphilis outbreak definitions for sample states and 
localities, they did not explicitly recommend specific 
numerical thresholds.xxviii In part, this is because the 
syphilis epidemic varies across the United States. For 
example, in a county with low syphilis morbidity, an 
increase of just a few cases could be considered an 
outbreak, whereas some jurisdictions have much 
more substantial syphilis morbidity and a higher 
threshold may be warranted.  
 
Currently, there is not a single system for 
jurisdictions to report syphilis outbreaks. CDC’s 
Health Alert Network (HAN) is one way in which 
jurisdictions share information regarding outbreaks, 
and some jurisdictions have provided HANs for 
syphilis outbreaks.xxix Although this is a national 
network, participation is voluntary, jurisdictions 
determine what level of information is provided in 
the HAN, and some jurisdictions have their own HAN 
systems. For example, some syphilis-related HANs 
provide information about the specific counties or 
cities affected, while others are for the entire state. 
Further, HANs may provide information about 
increases in a specific stage of syphilis (e.g., 
increases in primary and secondary syphilis) while 
others just reference syphilis overall, and congenital 
syphilis outbreaks are occasionally included in the 
same HAN as a non-congenital syphilis outbreak.xxx 
These reporting differences limit the generalizability 

of using documented outbreak declaration, such as a 
HAN, to develop standardized thresholds.  
 
Lag times in reporting and data processing. 
Syphilis case surveillance has not historically been in 
real-time because determination of whether an 
infection meets the CSTE case definition usually 
requires public health investigation, often including a 
medical chart review and a patient interview, which 
can take weeks (or longer). After a public health 
investigation is complete and surveillance staff 
determines that the CSTE syphilis case definition is 
met, data subsequently go through the information 
flow described in Exhibit 2. Given these processes, 
extensive delays from initial detection (e.g., initial 
laboratory testing) to inclusion in NNDSS might be 
expected; however, based on national data, there is 
evidence that the majority of syphilis cases are 
provided to CDC within two months of case 
identification date. For example, comparing the 
number of P&S syphilis cases in the live NNDSS 
weekly data (i.e., partial year data that are not yet 
finalized) to the number of cases recorded for that 
period in the annual, finalized data file, the 
estimated median percentage of cases recorded in 
the live data within two months of the reported case 
identification date was 56.1% (interquartile range: 
26.3%, 81.8%) during 2014-2021. However, there is 
considerable variability across jurisdictions in the 
percent of cases not yet reported after two months 
in the live weekly data, indicated by the width of the 
box-and-whiskers plots in Exhibit 5. Additionally, 
while the range in the percent of cases not yet 
reported has been somewhat consistent over time 
(based on the width of the boxes), the level of 
delayed reporting (based on the medians) has 
increased.  
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Exhibit 5. Percent of P&S syphilis cases not yet reported after two months in live weekly files,  
2014-2021 

  
Notes: Data are from the National Notifiable Diseases Surveillance System weekly files and include cases from 50 states and the 
District of Columbia.xxxi 

 
 
These reporting delays and other data anomalies can 
be seen in plots of cumulative case counts in live 
syphilis case notification data (Exhibit 6). In that 
chart, each line represents the total number of cases 
provided through NNDSS throughout the year based 
on information in the live weekly files. The last data 
point for each line is the value from full case 
reporting in the reconciled year-end file. Consistent 
with Exhibit 5, the width of each line (i.e., the 
number of months from the first recorded case to 
the last recorded case in the final file with fully 
reconciled, complete data) increases throughout the 
period and the upper tail of each curve is notably 
flatter. That reflects an increasing time to data 
closeout. The longer time to complete case reporting 
influences perceptions of morbidity at a given point 
during the live surveillance year. Additionally, 
although some spikes in the data might be expected 
due to disease outbreaks, each curve displays some 

dips and sudden increases that are not likely 
attributable solely to outbreaks and other changes in 
morbidity. The timing of these fluctuations is 
inconsistent across years; for example, in 2017, 
there was a sudden drop about halfway through the 
year. That aberration is likely a data artifact because 
the trend lines are cumulative case counts and 
values would be expected to increase or stay the 
same over the year. This unpredictability makes it 
difficult to know in real-time whether a sudden shift 
in the number of cases is the result of a true change 
in morbidity or a data artifact.  
 
These sudden drops or increases in national data are 
typically due to changes in a single high-morbidity 
jurisdiction and sudden shifts in low-morbidity are 
not likely to be reflected in the national data. 
Examining trends within each jurisdiction is 
important for a complete understanding of data 

Challenges to Aberration Detection in Syphilis Surveillance Data (cont.) 
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aberrations because reported cases from high-
morbidity jurisdictions may mask changes in other 
areas. However, such examination is time-
consuming. An additional challenge with 
understanding these trends is that incomplete case 

notification in the live data is likely not missing at 
random; for example, case investigation may be 
timelier for persons diagnosed in public STI clinics or 
persons who have had a prior syphilitic infection. 

 
 
 
Exhibit 6. Lag times and fluctuations in reporting and data processing for live syphilis case 
notification data, 2016-2020 

 

Note: Data are from the National Notifiable Diseases Surveillance System and include all stages of syphilis.xxxii  

 
 
 
There are several contributing causes of reporting 
lag times beyond two months and delays in data 
closeout. One potential explanation for increased lag 
times is the large increase in P&S syphilis cases, 
which has increased the workload of Disease 
Intervention Specialists (DIS) and surveillance staff. 
This increase can be seen by the increasing height of 
the cumulative case reporting charts in Exhibit 6. A 
second potential explanation is the COVID-19 
pandemic, which led jurisdictions to redirect DIS to 
work on COVID-19; this may have resulted in fewer 

staff available to investigate and provide partner 
services to P&S syphilis cases. If more senior DIS 
were redirected to COVID-19, less experienced staff 
might have taken longer to complete partner 
services investigations.  
 
Batch uploads or bulk deletions of data to or from a 
jurisdiction’s PHIS are common reasons for sudden 
dips and spikes in the NNDSS syphilis data. A 
jurisdiction may have months without data 
transmission if there are PHIS changes including 

Challenges to Aberration Detection in Syphilis Surveillance Data (cont.) 
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transitioning to a new system or changing data 
transmission standards (e.g., onboarding message 
mapping guides). Further, data system errors at the 
jurisdiction level might result in a temporary period 
where new cases are not transmitted; these 
technical issues may be compounded when there 
are changes in surveillance staff who need time to 
learn the system.  
 
Incomplete data for demographics and other 
characteristics. The percent of cases with valid 
and usable values for core demographic variables 
varies across jurisdictions and over time (Exhibit 7). 
This can lead to inconsistencies or gaps in the 
reporting of syphilis trends by subpopulation. To 
minimize bias due to missing data when displaying 
data in national surveillance reports, jurisdictions 
must meet a criterion of at least 70% of their cases 
having valid and usable data for a given variable.xxxiii 
For example, in the most recent national STI 
surveillance report, only 37 states and the District of 
Columbia had their data included in the analyses of 
P&S syphilis among men who have sex with men and 
23 states had their data included in the analyses of 
P&S syphilis by gender identity.  

 
The percentage of usable and complete data may 
vary throughout the year, which poses additional 
challenges for releasing unreconciled live data. For 
example, some jurisdictions may wait until the end 
of the year to do a one-time match with eHARS to 
identify HIV status for syphilis cases. Additionally, 
jurisdictions might prioritize different variables for 
completeness and accuracy depending on the 
unique features of their local epidemics. A sudden 
decrease in the percent of cases with valid and 
usable values for a priority variable could be 
indicative of a data quality issue, a data transmission 
issue, or that a program needs support. Some PHIS 
are unable to store all the variables contained in 
NNDSS data transmission standards for syphilis (e.g., 
some PHIS do not capture gender identity), making it 
impossible for a jurisdiction using one of these PHIS 
to transmit information for all NNDSS variables. An 
additional complexity is that jurisdictions may have 
inconsistencies in the extent to which their response 
questions for demographic variables such as race 
and ethnicity align with NNDSS variables. 

 
 
  

Challenges to Aberration Detection in Syphilis Surveillance Data (cont.) 
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Exhibit 7. Percent of P&S syphilis cases with valid and usable values for gender identity and sex 
of sex partners, 2017-2021 

 
Note: Data are from the National Notifiable Disease Surveillance System reconciled yearly files covering 50 states and the 
District of Columbiaxxxiv 

 
 
Complexity of date variables. Assessing data 
anomalies in time series data requires a clear 
determination of key dates in the case identification 
and notification lifecycle. However, this is complex 
for syphilis case notification data. CDC uses MMWR 
weeks to break up the calendar year. MMWR weeks 
start with the first week in January that has at least 
four days in the calendar year. Jurisdictions assign an 
MMWR week for each case notification, and 
concurrently can provide a variety of other dates, 
including the dates of disease onset, diagnosis, 
laboratory result, and first report to the state or 
community health center. CDC provides a 
hierarchical algorithm that indicates what date 
should be used to assign the MMWR week for 
syphilis case notifications, prioritizing dates closest 
to disease onset (e.g., specimen collection date). xxxv  
However, there is often variability in the algorithm’s 

application and there are instances when provided 
dates conflict with the assigned MMWR week (e.g., 
the assigned MMWR week might be three weeks 
after the date of the laboratory result). An added 
complexity to the date variables is that the value for 
the data field representing the date when CDC 
received the case notification may be updated 
between the initial notification and when the case 
data are finalized; examples of situations when that 
may occur include a jurisdiction transitioning to a 
new PHIS or a jurisdiction replacing the case data 
during the final year-end data reconciliation. It is 
critical to understand the limitations of the various 
date variables as context for interpreting trends and 
assessing whether aberrations reflect true changes 
in morbidity, data quality issues, or variation in how 
jurisdictions assign dates.

Challenges to Aberration Detection in Syphilis Surveillance Data (cont.) 



Applying Aberration Detection Algorithms to Live Public Health Data:  
Lessons from National Syphilis Case Surveillance Data 
 

 

    
 
 

16 

Strategies for Integrating Aberration Detection 
into the Data Lifecyle  
 
Selecting and implementing a data aberration 
detection methodology is complex. However, CDC 
and STLT health departments interested in 
integrating aberration into their data lifecycle can 
follow several strategies to make the data project 
more manageable and ensure that findings can be 
used for action.  
 
Focus on three key decisions: prioritize 
aberrations to evaluate, establish thresholds, 
and establish the target audience and use 
case. Aberrations include both changes in morbidity 
that could indicate an outbreak as well as changes in 
values and counts that reflect data quality issues. As 
such, there are endless possibilities for what to 
analyze in a data aberration detection algorithm 
including case counts, case counts stratified by 
demographics or geography, and completeness of 
key variables. Furthermore, the best aberration 
detection algorithm for syphilis at the national level 
may not be optimal for identifying aberrations at the 
local level or for another reportable disease with 
different epidemiological features. Three guiding 
questions can help to focus initial thinking. First, use 
requirements gathering to make decisions about 
specific aberrations to prioritize based on 
dimensions such as public health importance, ease 
of understanding, frequency of occurrence, and 
whether information is actionable. For syphilis, 
identifying data quality issues with substance use 
variables (e.g., methamphetamine) may be 
actionable but may be a lower priority than ensuring 
completeness and accuracy of core variables such as 
sex of sex partners. This can be accomplished 
through the intentional use of different data 
visualizations. Second, use exploratory data 
analyses, CSTE’s framework for outbreak 
detection,xxxvi and discussions with program staff 

who are closest to the data to establish operational 
definitions for thresholds. Additionally, it is 
important to note that these thresholds can change 
over time, may vary between high-morbidity and 
low-morbidity states, and may be different by 
prioritized population. Third, decide who is the 
target audience and establish a clear use case (e.g., a 
data report that will be emailed to jurisdiction-level 
surveillance staff versus an interactive dashboard 
limited to authorized data users). Different users will 
have varying priorities and preferences for data 
visualizations; as such, it is critical to be intentional 
about refining the concept for the product early in 
the development process.  
 
Do not get bogged down in complexity. Data 
aberration detection is challenging because 
identifying and interpreting aberrations requires 
both a strong technical solution and qualitative 
insights about the infection and broader context. 
When selecting a statistical method, think carefully 
about balancing the tradeoffs between optimizing 
the tool’s sensitivity and specificity versus pragmatic 
considerations such as the ease of implementation, 
the ability of end-users to understand and trust the 
findings, and that results are actionable. All 
approaches to detecting aberrations come with 
drawbacks, and there is unlikely to be a single best 
method for your application. The New York State 
Department of Health developed an Excel-based 
heat map that uses a historical limits approach to 
flag aberration in HIV surveillance data that may 
indicate issues with data quality or changing 
morbidity;xxxvii this has been adapted for current use 
with STI surveillance. Although the statistical 
approach may have lower accuracy than a more 
complex methodology, the tool is effective in that 
context because results are intended to be viewed 
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as exploratory to help surveillance staff identify 
counties to explore in more detail. Other advantages 
to the jurisdiction’s Excel-based solution are that 
users can review and easily understand the 
calculations, and that its interface is accessible to 
users with varying coding skills. One suggestion for 
jurisdictions interested in developing data aberration 
detection tools for syphilis is to start small, such as 
only focusing on case counts stratified by sex and sex 
of sex partners, and later adding more complexity 
such as additional stratifications by other 
demographics and geographic levels.  
 
Use a human-centered design process to 
incorporate users throughout the 
development. Incorporating user feedback 
throughout the design process helps to ensure the 
usability of the tool.xxxviii

xxxix

 Detailed requirements 
gathering enables a clear understanding of end 
users, their information needs, and their technical 
skills. A formal usability evaluation can provide 
valuable information; however, even informal 
discussion with end-users around a prototype of the 
tool can yield critical feedback on the tool’s content, 
design, and clarity.  Tool development should not 
be approached as a statistical problem requiring a 
technical solution, but rather should be approached 
from the end-users’ perspective on how the tool will 
be implemented.xl 
 
Build a cross-functional development team 
with complementary expertise. For the data 
aberration detection project to be successful, do not 
think about it as a technology problem in need of a 
software solution. Careful consideration of 
implementation is critical throughout the design 
process. This requires establishing a development 
team with multi-disciplinary expertise and 
representation across functional units. 
Epidemiologists, biostatisticians, informaticians, and 
public health practitioners such as DIS with 
complementary expertise in the data system, public 
health surveillance and programs, and statistical 

methods are critical to ensuring the selected 
aberration detection approach is appropriate for the 
data system and context. Additionally, the 
development team needs members with the skills 
and resources to ensure a successful implementation 
so that the aberration detection solution becomes a 
routine activity after the development project is 
completed. This includes assessing how the solution 
will fit into staff workflows, navigating the political 
environment to secure buy-in from agency 
leadership and key partners, and recruiting key staff 
to participate in requirements gathering and 
usability assessment. Although this work can be 
done in-house, it can be helpful to include an 
external partner to provide an outside perspective 
during the development process, additional 
expertise, and dedicated time to conduct 
requirements gathering and other project activities. 
To ensure sustainability and use, the management of 
the tool after development is completed should be 
done internally without external assistance or 
technical support.  
 
Develop a strategy for discussing 
aberrations when they are identified. For 
implementation of the aberration detection tool to 
succeed, it is important to consider how the results 
will be communicated. Discussing aberrations as 
they are detected should be done intentionally and 
respectfully across units in the jurisdiction, including 
both surveillance and program staff. The disease 
surveillance system necessitates strong partnerships 
between CDC and STLTs, and messaging that implies 
a partner is at fault can strain this relationship. 
Including individuals familiar with these challenging 
discussions in the development team is invaluable in 
developing the communication strategy. In addition 
to carefully designing messages, developing a system 
to track aberrations and communications can help to 
prevent a STLT partner from repeatedly receiving 
messages about a known issue. Further, this tracking 
can provide a means to evaluate how timely 
aberrations are being resolved. 

Strategies for Integrating Aberration Detection into the Data Lifecyle (cont.) 
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Conclusions 
 
There are many reasons for aberrations in live 
syphilis case surveillance data. While outbreaks are 
commonly identified as a reason for data 
aberrations, there are also data quality issues that 
can result in unexpected changes in observed values. 
Understanding and addressing these data quality 
issues is important for identifying changes that are 
attributable to outbreaks. Aberration detection is 
difficult to execute. The inherent complexity of the 
data lifecycle with multiple partners and processes 
to transmit data to CDC necessitates a deep 
understanding of the data ecosystem. There is no 
single “best” data aberration detection algorithm, 
and the most appropriate solution will differ 

depending on the context. Specific challenges to 
identifying and understanding aberrations include 
establishing a clear definition for what constitutes an 
outbreak, lag times in reporting and data processing, 
incomplete data for key variables, and the 
complexity of data variables. Although data 
aberration monitoring of case surveillance data is 
challenging, this work can be enhanced through an 
interdisciplinary developer team to create a 
customized aberration detection tool considering 
human-centered design principles and an 
interdisciplinary review team to inspect suspected 
aberrations before public health action.  
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